Управляемое решение Cisco Managed MPLS-VPN Solutions решает многие проблемы сервис-провайдеров, которые хотят иметь масштабируемую инфраструктуру VPN, позволяющую с максимальной эффективностью использовать полосу пропускания и удовлетворять абонентские требования к производительности и качеству.

MPLS представляет собой привлекательный способ использования транспортных возможностей ATM для передачи трафика IP. При использовании MPLS для сопряжения IP и ATM мы уже не используем PNNI для назначения пар VCI/VPI. Вместо этого используется протокол распределения меток (Label Distribution Protocol), который присваивает метки, занимающие пространство VPI/VCI в ячейке ATM, и превращает все коммутаторы ATM в коммутирующие по меткам маршрутизаторы (Label Switch Routers - LSR). Несмотря на эти привлека тельные возможности, ожидается, что большинство сетей MPLS будет основано на фреймах, а не на ячейках, причем фреймы будут, в основном, передаваться по оптическим каналам SONET/SDH, DWDM или используя темные волокна. Если в сети провайдера используется технология ATM, то MPLS позволяет коммутаторам ATM (превращенным в коммутирующие метки маршрутизаторы LSR) восстанавливать фреймы из ячеек, чтобы идентифицировать метки, необходимые для передачи фреймов по следующему сетевому сегменту (функция VC-merge).

Однако независимо от технологии опорной транспортной сети управляемое решение MPLS может быть представлено с помощью элементов, показанных ниже на рисунке 5.

В этом документе используются термины, которые могут быть незнакомы тем, кто не знает технологии MPLS. Полный список терминов приведен в Приложении A, однако мы хотим сделать некоторые пояснения прямо сейчас, чтобы помочь читателю понять содержание рисунка.

В состав опорной части сети (core network) входят P-маршрутизаторы (латинская буква «P» обозначает провайдера). В терминологии MPLS эти P-маршрутизаторы называются коммутирующими по меткам маршрутизаторами (Label Switch Routers - LSR). Как уже говорилось, даже если в опорной сети используется технология ATM, на коммутаторах ATM работает программное обеспечение MPLS, придающее им функциональность Уровня 3, и поэтому мы можем называть их маршрутизаторами. Эти P-маршрутизаторы пользуются и передаю щими (коммутирующими), и управляющими функциями MPLS. Передача осуществляется с помощью свопинга меток, а управление - с помощью протокола распределения меток (Label Distribution Protocol). Эти маршрутизаторы не осведомлены о существовании виртуальных частных сетей (VPN) и не участвуют в BGP-обмене, который происходит на РЕ-маршрутизаторах.

PE-маршрутизаторы (буквы «PE» означают периферийную часть сети провайдера) должны присваивать пакету начальную метку при его поступлении в опорную сеть MPLS (MPLS core) и удалять эту метку в момент, когда пакет покидает сеть. CE-маршрутизаторы («CE» означает периферию сети заказчика) подключаются к PE-маршрутизаторам и не требуют специальной модификации для поддержки MPLS-VPN. PE-маршрутизаторы связываются друг с другом по многопротокольному BGP для обмена информацией о подключенных VPN. Это может вызвать проблемы с масштабированием, поскольку если PE-маршрутизаторы подключаются друг к другу по принципу «каждый с каждым», то по мере появления в сети новых маршрутизаторов количество связей между ними будет нарастать в геометрической прогрессии. Главным способом сокращения связей между PE-маршрутизаторами является применение групп Route-Reflector (RR). В каждой такой RR-группе имеется одно устройство - сервер маршрутизации, которому подчиняется ряд PE-маршрутизаторов. Все подчиненные маршрутизаторы получают данные о маршрутах с этого сервера. В случае необходимости PE-маршрутизатор может одновременно входить в состав нескольких групп.

Рисунок 5. Элементы MPLS

Каждое устройство MPLS PE поддерживает по одной таблице VRF (таблица маршрутизации и передачи VPN) на каждую VPN. В таблице VRF хранятся данные обо всех маршрутах, известных этому устройству в той или иной VPN. MPLS-устройство идентифицирует маршруты, относящиеся к определенной сети VPN с помощью «различителя маршрутов» (Route Distinguisher - RD), который присваивается всем маршрутам соответствующего CE. Эти «различители» (RD) имеют значение только для PE-устройств, так как P-маршрутизаторы коммутируют ячейки или пакеты на основании информации, заключенной в метках.

Магистральная адресация, которая используется для подключения P-маршрутизаторов, полностью отделена от адресации, используемой для подключения CE-маршрутизаторов. Эти две схемы маршрутизации никак не взаимодействуют между собой. PE-маршрутизаторы сохраняют адреса опорной сети в глобальной таблице маршрутизации, которая хранится отдельно от таблиц VRF, где находятся данные обо всех маршрутах каждой VPN, к которой подключены сайты CE. Каждая таблица VRF имеет так называемую «политику импорта» (import policy), которая определяет, какие обновления PE следует принять, и «политику экспорта» (export policy), определяющую, какие маршруты следует объявлять.

Когда PE-устройство присваивает метку на границе сети MPLS, эта метка точно определяет весь маршрут, по которому будет передаваться данный пакет в этой сети. Это происходит потому, что LDP уже определил, какая входящая метка будет заменяться на соответствующую исходящую метку на каждом P-маршрутизаторе с тем, чтобы пакет был доставлен в конечный пункт назначения. Поэтому MPLS представляет собой форму маршрутизации от источника, так как только на периферии принимается решение о маршруте.

Каждый пограничный маршрутизатор заказчика должен инжектировать свои маршруты в соответствующие таблицы VRF, определенные в MPLS-сети для данной VPN. Эта задача выполняется пограничными маршрутизаторами заказчика, настроенными на передачу информации о маршрутах, необходимых другим сайтам своей же VPN. Для этой передачи может использоваться статическая маршрутизация, а также маршрутизация BGP, OSPF или RIPv2. В качестве примера на рисунке 4 показана сеть VPNA, где используются подсети сети 2.0.0.0 класса A. Сайт, находящийся в подсети 2.2.0.0, должен объявить о себе другим сайтам своей VPN. То же самое должны сделать и другие сайты. Таким образом в табли цах VRF каждого устройства PE, находящегося в этой сети, появляется информация обо всех подсетях, входящих в состав VPNA.

Из этого примера следует, что маршруты VPNA не взаимодействуют с маршрутами VPNB. Подобное разделение маршрутной информации является основным фактором, обеспечивающим отличную масштабируемость решений MPLS-VPN, поскольку не требуется поддержка единой таблицы маршрутизации, содержащей информацию о том, как добраться до любой точки сети.

Целевой рынок дла сервис-провайдера, ценность предложениа, потенциальная структура тарификации и преимущества дла конечных пользователей | Построение виртуальных частных сетей | Обзор технологии mpls